Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(46): e2120221119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2280112

RESUMEN

The COVID-19 pandemic has created a large population of patients who are slow to recover consciousness following mechanical ventilation and sedation in the intensive care unit. Few clinical scenarios are comparable. Possible exceptions are the rare patients in post-cardiac arrest coma with minimal to no structural brain injuries who recovered cognitive and motor functions after prolonged delays. A common electroencephalogram (EEG) signature seen in these patients is burst suppression [8]. Biophysical modeling has shown that burst suppression is likely a signature of a neurometabolic state that preserves basic cellular function "during states of lowered energy availability." These states likely act as a brain protective mechanism [9]. Similar EEG patterns are observed in the anoxia resistant painted turtle [24]. We present a conceptual analysis to interpret the brain state of COVID-19 patients suffering prolonged recovery of consciousness. We begin with the Ching model and integrate findings from other clinical scenarios and studies of the anoxia-tolerant physiology of the painted turtle. We postulate that prolonged recovery of consciousness in COVID-19 patients could reflect the effects of modest hypoxic injury to neurons and the unmasking of latent neuroprotective mechanisms in the human brain. This putative protective down-regulated state appears similar to that observed in the painted turtle and suggests new approaches to enhancing coma recovery [12].


Asunto(s)
COVID-19 , Coma , Humanos , Pandemias , Electroencefalografía , Encéfalo , Hipoxia
2.
Ann Neurol ; 91(6): 740-755, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1729093

RESUMEN

OBJECTIVE: The purpose of this study was to estimate the time to recovery of command-following and associations between hypoxemia with time to recovery of command-following. METHODS: In this multicenter, retrospective, cohort study during the initial surge of the United States' pandemic (March-July 2020) we estimate the time from intubation to recovery of command-following, using Kaplan Meier cumulative-incidence curves and Cox proportional hazard models. Patients were included if they were admitted to 1 of 3 hospitals because of severe coronavirus disease 2019 (COVID-19), required endotracheal intubation for at least 7 days, and experienced impairment of consciousness (Glasgow Coma Scale motor score <6). RESULTS: Five hundred seventy-one patients of the 795 patients recovered command-following. The median time to recovery of command-following was 30 days (95% confidence interval [CI] = 27-32 days). Median time to recovery of command-following increased by 16 days for patients with at least one episode of an arterial partial pressure of oxygen (PaO2 ) value ≤55 mmHg (p < 0.001), and 25% recovered ≥10 days after cessation of mechanical ventilation. The time to recovery of command-following  was associated with hypoxemia (PaO2 ≤55 mmHg hazard ratio [HR] = 0.56, 95% CI = 0.46-0.68; PaO2 ≤70 HR = 0.88, 95% CI = 0.85-0.91), and each additional day of hypoxemia decreased the likelihood of recovery, accounting for confounders including sedation. These findings were confirmed among patients without any imagining evidence of structural brain injury (n = 199), and in a non-overlapping second surge cohort (N = 427, October 2020 to April 2021). INTERPRETATION: Survivors of severe COVID-19 commonly recover consciousness weeks after cessation of mechanical ventilation. Long recovery periods are associated with more severe hypoxemia. This relationship is not explained by sedation or brain injury identified on clinical imaging and should inform decisions about life-sustaining therapies. ANN NEUROL 2022;91:740-755.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Lesiones Encefálicas/complicaciones , COVID-19/complicaciones , Estudios de Cohortes , Humanos , Hipoxia , Estudios Retrospectivos , Inconsciencia/complicaciones
5.
Front Neurol ; 11: 880, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-802600

RESUMEN

Coronavirus disease 2019 (COVID-19) requires admission to intensive care (ICU) for the management of acute respiratory distress syndrome in about 5% of cases. Although our understanding of COVID-19 is still incomplete, a growing body of evidence is indicating potential direct deleterious effects on the central and peripheral nervous systems. Indeed, complex and long-lasting physical, cognitive, and functional impairments have often been observed after COVID-19. Early (defined as during and immediately after ICU discharge) rehabilitative interventions are fundamental for reducing the neurological burden of a disease that already heavily affects lung function with pulmonary fibrosis as a possible long-term consequence. In addition, ameliorating neuromuscular weakness with early rehabilitation would improve the efficiency of respiratory function as respiratory muscle atrophy worsens lung capacity. This review briefly summarizes the polymorphic burden of COVID-19 and addresses possible early interventions that could minimize the neurological and systemic impact. In fact, the benefits of early multidisciplinary rehabilitation after an ICU stay have been shown to be advantageous in several clinical conditions making an early rehabilitative approach generalizable and desirable to physicians from a wide range of different specialties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA